Myositis 101
(or what we can discuss in a short time)

Mark Gourley, MD

THE MYOSITIS ASSOCIATION
What is Myositis?

• Myo = muscle
• itis = inflammation
• Therefore: an inflammatory muscle disease
• We don’t know the cause
• Problems = deterioration of the muscles and dysfunction of body tissues
Myositis – (aka) Idiopathic Inflammatory Myopathy (IIM)

- Autoimmune illness characterized by skeletal muscle inflammation
 - Typically associated with:
 - Weakness
 - Blood Laboratory changes
 - **CK**, AST, ALT, LDH, Aldolase, Serum myoglobin
 - Autoantibodies
 - Nonspecific and Disease Specific (Myositis Specific)
 - EMG and MRI changes
 - Muscle biopsy abnormalities (inflammation)
 - Typically respond to anti-inflammatory therapy
When is it Myositis?

The physician’s task is to prove an idiopathic inflammatory myositis (IIM) is present

• Example of a non-inflammatory disease
 – Adult onset
 – Proximal, symmetric muscle weakness
 – Elevation of CK, Aldolase and liver associated enzymes
 – Show degen/regen, inflammatory infiltrates and fibrosis on biopsy
 – EMG compatible with myopathy
 – MAY GET BETTER ON STEROIDS/DMARDS

Limb Girdle Muscular Dystrophy = Dysferlinopathy
Does this mean you all have muscular dystrophy?

• NO!!

• But, we as health care providers need to be very sure about our diagnosis
 – Life changing – and NOT for the good!
What Brings The Patient To The Doctor?

- Most report fatigue/extremely tired
- Unable to do daily physical tasks
 - Typically patients say do to arthritis or something else
- May have breathing problems
- Some may have rash, arthritis, swallowing problems, weight loss
- Clue for the Doctor = history, exam and labs
Most Physicians Become Worried About IIM When The CK Rises

- CK is an enzyme released by damaged muscle
- Muscle (striated, smooth, cardiac types)
 - Exercise, Inflammation, dystrophies, metabolic, injections
- Drugs
 - antimalarials, colchicine, statins, penicillamine, zidovudine, alcohol and cocaine
- Infections – bacterial, viral, fungal, protozoal
- Neurologic – denervation, ALS, GBS
- Vascular – vasculitis, DMI
- Endocrine – thyroid, Ca, K
- Malignancies
- Trauma
Clues to the Diagnosis of IIM

• **Leading toward IIM**
 - FmHx of autoimmunity
 - Symmetric, chronic, prox. > distal weakness
 - No neuropathy, fasciculations, or cramping
 - Photosensitive rashes
 - Fever, arthritis, nailbed change, other CTD Sx
 - Enzymes 2-50X normal
 - Autoantibodies
 - Inflammatory STIR-MRI

• **Leading away from IIM**
 - FmHx same syndrome
 - Weakness related to activity, fasting or of the face
 - Neuropathy, fasciculations or cramping
 - No rashes
 - No fever, arthritis, other CTD symptoms
 - Enzymes <2X or >100X nl.
 - No autoantibodies
 - MRI normal or only atrophic
We Classify IIM

- PM – no rash present
- DM – rash present
 - Gottren’s, Heliotrope
- Cancer Associated
- Associated with CTD
- Inclusion body myositis
- Juvenile myositis

Helps providers think about the disease in terms of what to look for, how to treat and what to be wary of.
Rashes in DM

Gottren's

Heliotrope
Rashes in DM

Linear Extensor Erythema

Mechanic’s Hands

V - Sign

Shawl Sign
Cancers and Myositis

- Increased risk DM > PM
- Malignancy may occur several years after onset of myositis
- Types
 - PM
 - Lung, Bladder, Lymphoma (Non Hodgkins)
 - DM
 - Ovarian, Lung, Prostate, GI, Lymphoma
- Remember to screen carefully
Inclusion Body Myositis

- Most common form of IIM > age 50 years
- Insidious onset (years)
- Distal involvement (decreased grip, foot drop)
- History of falling
- Asymmetry and atrophy
- Diagnostic biopsy showing modest inflammation
- Mostly non-responsive to therapy
Connective Tissue (other autoimmune diseases) Associated Myositis

- Most common overlaps include:
 - Systemic sclerosis
 - Rheumatoid arthritis
 - SLE
 - Sjögren's syndrome

- Vancsa et al.
 - 130 primary IIM
 - 39 overlap myositis
Classification by Myositis Specific Autoantibody (MSA)

• Look at my talk regarding MSAs
• Serologic groups
 – Myositis-specific
 • Anti-synthetases (Jo-1, PI-7, PI-12, OJ, EJ)
 • Anti-Mi-2
 • Anti-SRP (signal recognition particle)
 • MSA negative
 – Myositis-associated
 • Anti-PM/Scl
 • Anti-Ku
 • Anti-U1RNP
 • Anti-U2RNP
 • Anti-p155, Anti-MJ
 • MAA negative
MSA Subgroups

Anti-aminoacyl-tRNA synthetases
- Interstitial lung disease,
- Arthritis, Fevers,
- Mechanic’s hands
- 75% 5-year survival

Anti-Signal Recognition Particle
- Acute, severe muscle weakness, Myalgias,
- Cardiac involvement
- 25% 5-year survival

Anti-Mi-2: chromodomain helicase DNA binding protein 4
- Classic dermatomyositis,
- V-sign & shawl rashes,
- Cuticular overgrowth
- 90% 5-year survival
IIM — SEROLOGIC GROUPS DIFFER IN DISEASE COURSE

- Normal
- Mi-2/MAS
- Synthetase
- SRP

Time

Therapy
Statin-Induced Myositis

- Generally elderly
- Usually occurs within a few month of start of statin, usually goes away by stopping statin
- Aches, pains, weakness
- Recovery in 1 wk to >14 mo; mean of 2.3 months
- Recurrent in 57% if statin taken again
- Autoantibodies to the membrane receptor to which statins bind – HMGCoA reductase
Diagnostic Evaluations

- Manual Muscle Examination
- Laboratory
 - CK, Aldolase, AST, ALT, LDH, serum myoglobin, MB fraction
- Electromyography - increased membrane irritability in the form of a classic triad:
 - Increased insertional activity and spontaneous fibrillations
 - Abnormal myopathic low amplitude, short-duration polyphasic motor potentials
 - Complex repetitive discharges

Fig. 1. EMG patterns at low to maximum voluntary contraction in patients with myositis. Distribution of pattern 1 (short-duration MUPs with low-amplitude IP envelope), pattern 2 (long-duration MUPs with high-amplitude IP envelope), pattern 3 (mixture of pattern 1 and 2 characteristics), and pattern 4 (normal MUPs and normal IPs).

Diagnostic Evaluation

• MRI
 – Sensitive detection for activity and damage
 • Activity = spotty bright areas
 • Damage = fatty replacement
Disease Activity vs. Damage

Patient 1 STIR MRI Patient 2

T1 MRI
Muscle Biopsy

- Helpful, not always diagnostic
- Use MRI imaging to guide site of biopsy
- Send sample to reliable pathologist
- Complete histological examination
 - Standard stains
 - Enzymatic (metabolic)
 - MHC
 - Immunohistochemical (cell types)
Muscle Biopsy
Therapy

• Knowledge
 – Talk to your health care providers
 – Get involved in a support group
 • In person, on the web, etc
 – Read
 – Join TMA and other organizations

– Never, Never, Never give up HOPE!!!!!
Modify Your Space

• Adjust to make your life easier
 – Reaching, getting around, eating, sitting, bathroom, car, sleeping, etc.

• Help with stairs

• Avoid loose rugs, carpet (don’t fall)
 – Careful of stuff on the floor
 – Wear good shoes

• Care when eating – don’t aspirate
Modify Your Lifestyle

• Know your abilities
• Be careful in the sun
 – Sun block, protective clothing
• Be knowledgeable about your health insurance
• Recognize the difficulties of family members and care providers
Keep Strong

• Physical therapy
 – Exercise is more important now than ever
 – Exercise won’t hurt the muscles

• Occupational therapy
 – Use adaptive devices to help

• Eat well
 – Nutritious diet, watch your weight
Follow Health Care Instructions

• Take your meds
 – If you don’t, let your care provider know
 – Meds are there to help but may hurt
 – Remember meds to prevent complications
 • Calcium, vitamin D, folic acid, etc.
 – Careful about supplementations
 • Let your physician know what your taking

• Do your therapy
How Does Your Doctor Choose Medications?

• Based on best practices, evidence and experience
• There is no standard therapy
• Severity of illness
• Type of myositis
Therapeutic Decisions

• No FDA approved drugs for IIM
• Steroids are mainstay
 – The most effective and prevalent therapy for IIM
 – Timing, dose and route of administration should be based on disease severity
• Factors important in achieving responses are:
 – Adequacy of the initial dose (>1 mg/kg/d)
 – Maintenance of high dose therapy until or after CK normalization
 – A slow taper (averaging ~ 10 mg/month)
• Improvement in strength may lag behind CK improvement by weeks to months
• An important cause of secondary myopathy and other adverse events
IIM Systemic Therapies Overview

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids</td>
<td>>1 mg/kg/ qd - 1 g IV bolus qm</td>
<td>Taper to 0.25 mg/kg/qd or qod over months</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>5-25 mg po/wk</td>
<td>SQ, IV routes also useful</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>50-200 mg po qd</td>
<td>GI intolerance often</td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>200-400 mg po qd</td>
<td>For systemic symptoms</td>
</tr>
<tr>
<td>IVIG</td>
<td>0.5-1 g/kg/dX2d/m</td>
<td>Taper by time or dose</td>
</tr>
<tr>
<td>Cytoxan</td>
<td>0.5-1 g/m2 IV qm</td>
<td>Or 50 – 150 mg po qd</td>
</tr>
<tr>
<td>Mycophenolate</td>
<td>1 – 1.5 gm po BID</td>
<td>GI intolerance</td>
</tr>
<tr>
<td>Cyclosporin</td>
<td>2-4 mg/kg/d</td>
<td>Follow levels and Cr</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>3-6 mg po BID</td>
<td>Renal toxicity</td>
</tr>
<tr>
<td>Rituximab</td>
<td>1 gm x 2, 14 days apart</td>
<td>Infusion rxn, B cell depletion</td>
</tr>
<tr>
<td>Anti-TNF</td>
<td>Varies</td>
<td>A hint of help</td>
</tr>
<tr>
<td>Combinations</td>
<td></td>
<td>Very helpful in some</td>
</tr>
</tbody>
</table>
DON’T

• Fall
• Aspirate
• Give up HOPE!